

Left: CRT Holder in Action \ Right: Boring bar in CRT Holder

360°of Coolant

Holders Radial Relief Mini Boring Bars Boring Bars PCD/CBN Tipped Helical Boring Bars Profile Boring Bars Back Chamfer Acme Threading Tools Qualified Tools Thread Tools Groove Tools

SINGLE POINT TOOLS PRODUCT OVERVIEW

All single point tools are designed for internal machining on a lathe. The helical boring bars can be used for both lathe and mill applications. All cutting tools are made from premium submicron carbide and are stocked with and without an ALTiN+ coating. Technical information is available on pages 67-72.

CRT Holders (p.35)

CRT (Coolant Ring Technology) Holders are made with heat-treated steel, feature two lock-down screws for max rigidity, and have coolant flow that surrounds the tool for maximum cooling.

DH/DHF Holders (p.36) Our economic holders come in two styles. DH Holders have two set screws and no flats. DHF Holders have two set screws and a flat.

QHC Holders (p.37)

QHC Holders have two flats on the shank, two coolant holes, and four set screws. QHC Holders can be used with a back stop. Available in inch or metric.

Mini Boring Bars (p.38) Mini Boring Bars range in diameter from 0.015 to 0.045 inch. They are fluted for maximum strength.

Radius (p.44-45)

Radius boring bars feature a corner radius that provides an improved surface finish.

Back Chamfer (p.53)

to bore, cut a chamfer at the end of a hole, and cut thread reliefs.

O-Ring Groove Tools (p.56) O-Ring Groove Tools are ideal for machining a groove with tapered sides.

Left Hand Threading (p.63) Threading Tools come in many different Thread Tools Qualified have a positive sizes. This facilitates selecting the tool with maximum rigidity.

Radial Relief (p.39) Radial Relief Boring Bars have a radial relief behind the cutting edge that provides for a strong cutting edge.

Left-Hand (p.46-47) Left-Hand Boring Bars range in diameter from 0.050 to 0.490 inch and many different bore depths to achieve max rigidity.

Profile Boring Bars (p.54) Back Chamfer Boring Bars are designed Profile Boring Bars are ideal tools for internal profiling on CNC lathes.

Retaining Ring (p.57-59) **Retaining Ring Groove Tools cut an** internal groove with straight edges.

Thread Tools Qualified (p.64) top rake on the flute and a qualified length to facilitate quick tool changes.

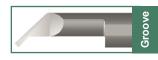
Qualified Boring Bars (p.40-41) Qualified Boring Bars have an overall length Boring Bars range in diameter from that is qualified to \pm 0.001 and a minimum 0.050" to 0.490" and many different

Diamond Tipped (p.48-49) PCD-Tipped Boring Bars cut abrasive non-ferrous materials. CBN-Tipped Boring Bars are for cutting ferrous metal over 45 RC.

Face Groove (p.55) Face Groove Tools cut a groove in the face of the part.

Groove - Full Radius (p.60-61) Full Radius Groove Tools cut an internal groove with straight edges and a full radius.

Acme Thread Tools (p.65-66) These threading tools are available with acme or stub acme profiles.



Boring Bars (p.42-43)

bore diameter that is qualified to ± 0.0005 . bore depths to achieve max rigidity.

Helical (p.50-52) Helical Boring Bars have a helical flute that produces less side cutting pressure, ideal for the cutting of unfavorable length-to-diameter ratios.

Undercut Groove (p.56) Undercut Groove Tools come with and without a radius. The radius style can be used as a profile tool.

Thread Tools (p.62) Threading Tools come in many different sizes. This facilitates selecting the tool with maximum rigidity.

(805) 584-9495 (800) 383-2244

SOLID CARBIDE BORING BAR FEED AND SPEED CHART

		SPEED		CUTTING CONDITIONS						
MATERIAL	HB/Rc	JFEEL				тос	L DIAMETI	ER		
		UNCOATED	ALTIN+	FEED IPR	.015045	.050100	.110160	.180230	.290320	.360+
		ONCOALED			MAX DOC	MAX DOC	MAX DOC	MAX DOC	MAX DOC	MAX DOC
CAST IRON	160 HB	75-200	200-550	.0005010	0.006	0.008	0.010	0.014	0.020	0.031
CARBON STEEL	18 Rc	75-200	200-450	.0005007	0.003	0.005	0.006	0.008	0.012	0.017
ALLOY STEEL	20 Rc	75-200	200-425	.0005007	0.003	0.004	0.005	0.007	0.010	0.015
TOOL STEEL	25 Rc	75-175	175-300	.0005005	0.002	0.003	0.004	0.006	0.008	0.012
300 STAINLESS STEEL	150 HB	75-175	175-350	.0005005	0.003	0.003	0.004	0.006	0.008	0.013
400 STAINLESS STEEL	195 HB	75-210	130-420	.0005005	0.002	0.003	0.004	0.006	0.008	0.012
HIGH TEMP ALLOY (Ni & Co BASE)	20 Rc	50-130	130-300	.0005004	0.002	0.003	0.003	0.005	0.007	0.010
TITANIUM	25 Rc	50-120	120-275	.0005005	0.003	0.004	0.005	0.006	0.009	0.014
HEAT TREATED ALLOYS (38-45Rc)	40 Rc	50-100	100-200	.0005005	0.002	0.002	0.003	0.004	0.006	0.009
ALUMINUM	100 HB	75-250	250-750	.0005015	0.011	0.015	0.019	0.026	0.038	0.056
BRASS, ZINC	80 HB	75-300	250-650	.001010	0.009	0.012	0.015	0.021	0.030	0.045

SFM = Surface Feet Per Minute DOC = Depth of Cut IPR = Inches Per Revolution

Starting parameters only. Length-to-diameter ratios, setup, and machine rigidity may affect performance.

 $\begin{aligned} \mathsf{SFM} &= .262 \times \mathsf{DIAMETER} \times \mathsf{RPM} \\ \mathsf{RPM} &= 3.82 \times \mathsf{SFM} \div \mathsf{DIAMETER} \\ \mathsf{IPM} &= \mathsf{FPT} \times \mathsf{Number} \text{ of Teeth} \times \mathsf{RPM} \end{aligned}$

 $\label{eq:Min} \begin{array}{l} \mbox{Meters/Min} = \mbox{SFM} \times .3048 \\ \mbox{Millimeters/Rev} = \mbox{IPR} \times 25.40 \end{array}$

67

SOLID CARBIDE BORING TROUBLESHOOTING

PROBLEM	CAUSE	SOLUTION				
	CUTTING CONDITIONS	Check for excessive speed and feed - See chart.				
RAPID FLANK WEAR	TOOL	Select a coated tool.				
	PART	Make sure prior operation did not work harden the metal.				
	TOOL	Select a coated tool.				
BUILT-UP EDGE	CUTTING FORCE	Check for excessive feed rate (IPR) - See chart.				
	HEAT	Use the SCT coolant holder. If coolant is not available, use shop air and a coated tool.				
	CUTTING CONDITIONS	Check for excessive feed and speed and depth of cut - see chart.				
CORNER BREAKAGE	TOOL	Select a tool with a radius. A radius is stronger than a sharp corner.				
	PART	Check the drilled hole.				
	CUTTING CONDITIONS	Check for excessive feed rate (IPR) - See chart.				
SURFACE TOO ROUGH	BUILT-UP EDGE	See above (Built-Up Edge).				
CHATTER	SET UP	Set tool above center. Reduce the overhang ratio. Clamping length should be at least 3x the boring bar diameter. Change the speed of the machine. Speed change may break up harmonics and reduce chatter.				
	BORING BAR	Select the largest diameter boring bar that will bore the required diameter.				
TAPER SMALLER	CHIP PACKING	If the boring bar is too large to allow chips to evacuate, then the chips may pack on the tool and cause the bar to deflect away from the bore.				
IN BACK	PROGRAM	If the taper is consistent, then the program can be altered to bore a taper in opposite direction resulting in a straight hole.				
	CUTTING FORCES	Reduce forces. Deflecting bar below center causes hole to become larger.				
TAPER BIGGER IN BACK	BUILT-UP EDGE	Built-up edge will cause the hole to become larger until the built edge breaks off, then the hole becomes smaller.				
	PROGRAM	If taper is consistent, then the program can be altered to bore a taper in the opposite direction resulting in a straight hole.				

GROOVING TOOL FEED AND SPEED CHART

		SPEED) (SFM)		CUTTI	NG CONDIT	IONS			
MATERIAL	HB/Rc			TOOL DIAMETER						
		UNCOATED	ALTIN+	.060 -0.080	.090120	.187	.250312	.375+		
		UNCOATED	ALIIN+	MAX FPR	MAX FPR	MAX FPR	MAX FPR	MAX FPR		
CAST IRON	160 HB	75-200	200-550	0.0010	0.0012	0.0017	0.0031	0.0044		
CARBON STEEL	18 Rc	75-200	200-450	0.0007	0.0008	0.0011	0.0022	0.0030		
ALLOY STEEL	20 Rc	75-200	200-425	0.0006	0.0007	0.0010	0.0019	0.0026		
TOOL STEEL	25 Rc	75-175	175-300	0.0005	0.0006	0.0008	0.0015	0.0022		
300 STAINLESS STEEL	150 HB	75-175	75-350	0.0006	0.0007	0.0010	0.0019	0.0026		
400 STAINLESS STEEL	195 HB	75-210	130-420	0.0005	0.0006	0.0008	0.0016	0.0023		
HIGH TEMP ALLOY (NICKEL & COBALT BASE)	20 Rc	50-130	130-300	0.0004	0.0005	0.0007	0.0013	0.0017		
TITANIUM	25 Rc	50-120	120-275	0.0005	0.0006	0.0008	0.0016	0.0022		
HEAT TREATED ALLOYS (38-45Rc)	40 Rc	50-100	100-200	0.0004	0.0004	0.0006	0.0011	0.0016		
ALUMINUM	100 HB	75-250	250-750	0.0022	0.0026	0.0037	0.0065	0.0085		
BRASS, ZINC	80 HB	250-300	250-650	0.0018	0.0021	0.0030	0.0053	0.0079		

SFM = Surface Feet Per Minute

FPR = Feed Per Revolution

Starting parameters only. Length-to-diameter ratios, setup, and machine rigidity may affect performance.

GROOVING TOOL TROUBLESHOOTING

PROBLEM	CAUSE	SOLUTION				
	CUTTING CONDITIONS	Check for excessive speed - see chart.				
RAPID FLANK WEAR	TOOL	Select a coated tool.				
	PART	Make sure prior operation did not work harden the material.				
	TOOL	Select a coated tool.				
BUILT-UP EDGE	CUTTING FORCE	Check for excessive speed rate (IPR) - see chart.				
	HEAT	Use the SCT coolant holder. If coolant is not available, use shop air and a coated tool.				
	CUTTING CONDITIONS	Reduce RPM and increase feed rate within the feed and speed chart parameters.				
CHATTER	CLAMPING	Clamping length should be a minimum of 3x the shank diameter in the tool holder. Check tool holding rigidity.				
	TOOL	Hone cutting edge. A light hone (0.0001-0.0003 inch) will help keep force constant.				
TOOL BREAKAGE	CUTTING CONDITIONS	Check for excessive feed rate (IPR) - see chart.				
	CHIP PACKING	Stagger - Peck grooving.				

Scientific Cutting Tools, Inc. www.sct-usa.com sales@sct-usa.com

SINGLE POINT THREADING TECHNICAL CHART

		SPEED	SPEED (SFM)		FI	RST PAS		н		
MATERIAL	HB/Rc			TOOL DIAMETER						
		UNCOATED	ALTiN+	.040050	.060092	.120152	.180232	.290362	.373+	
CAST IRON	160 HB	75-200	200-550	0.003	0.004	0.005	0.007	0.008	0.009	
CARBON STEEL	18 Rc	75-200	200-450	0.003	0.005	0.006	0.007	0.008	0.009	
ALLOY STEEL	20 Rc	75-200	200-425	0.003	0.004	0.005	0.006	0.007	0.008	
TOOL STEEL	25 Rc	75-175	175-300	0.002	0.003	0.004	0.005	0.006	0.007	
300 STAINLESS STEEL	150 HB	75-175	175-350	0.003	0.003	0.004	0.005	0.006	0.007	
400 STAINLESS STEEL	195 HB	75-210	130-420	0.003	0.004	0.005	0.006	0.006	0.007	
HIGH TEMP ALLOY (NICKEL & COBALT BASE)	20 Rc	50-130	130-300	0.002	0.003	0.003	0.004	0.005	0.005	
TITANIUM	25 Rc	50-100	120-275	0.003	0.003	0.004	0.005	0.006	0.007	
HEAT TREATED ALLOYS (38-45Rc)	40 Rc	50-100	100-200	0.002	0.002	0.003	0.004	0.004	0.005	
ALUMINUM	100 HB	75-250	200-750	0.004	0.005	0.007	0.008	0.010	0.011	
BRASS, ZINC	80 HB	75-300	250-650	0.003	0.005	0.006	0.007	0.008	0.009	

Parameters are a starting point based on machinability rating at hardness listed.

Check machinability rating of the material to be machined and adjust First Pass Depth.

Helpful Formulas and Information

 $PITCH = \frac{1}{TPI}$

TPI = Threads Per Inch

ACME Thread Depth = Pitch × 0.5

Stub ACME Thread Depth = Pitch × 0.3

NPT Pipe Thread Depth = Pitch × 0.76

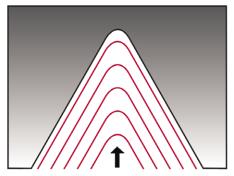
Internal 60° Thread Depth = Pitch × 0.54

Feed Rate = Pitch × Number of Thread Starts

Minimum Depth per Pass should not be less than 0.0003

Threads not ending in a relief need at least one thread pitch length of pullout

Make sure feed rate calculation does not exceed the maximum feed rate of the machine



SINGLE POINT THREADING TROUBLESHOOTING

PROBLEM	CAUSE	SOLUTION
	CUTTING CONDITIONS	Check for excessive speed - see chart.
RAPID FLANK WEAR	PART	Make sure prior operation did not work harden the material.
	TOOL	Select a coated tool.
	TOOL	Select a coated tool.
BUILT-UP EDGE	CUTTING FORCE	Increase the number of passes.
	HEAT	Use the SCT coolant holder. If coolant is not available, use shop air and a coated tool.
	CUTTING CONDITIONS	Reduce the depth-of-cut on the first pass.
CORNER BREAKAGE	PROGRAM	If there is no thread relief, withdraw the tool on an angle.
	PART	End in thread relief.
CHIPS WRAPPING AROUND TOOL	TOOL	Use a tool that is at least 30% smaller than the hole diameter.

RADIAL INFEED

NOT RECOMMENDED

MODIFIED FLANK

Radial Infeed is not recommended. Modified flank at 1° is recommended.

For unfavorable length-to-diameter ratios or difficult-to-machine materials, the number of passes will need to be increased up to 40% more.

Depth of cut per pass should not be less than 0.0003 inch.

SINGLE POINT CBN & PCD TECHNICAL & APPLICATION

PCD TIPPED TOOL INFORMATION

SCT PCD tools and inserts are excellent for continuous cutting of a wide range of non-ferrous and non-metal materials. The products are precision ground for machining to sub-micron finishes with maximum tool life. PCD allows for higher cutting speeds with longer tool life.

				SINGLE POINT PCD TIPPED BARS					
MATERIAL	BHN/Rc	SPEED RANGE	FEED IPR	TOOL DIAMETER					
		(SFM)	IFN	.120-160	.180230	.290320	.360+		
				MAX DOC	MAX DOC	MAX DOC	MAX DOC		
LOW SILICON ALUMINUM	225-350 BHN	1000-5000	.001007	0.015	0.021	0.03	0.045		
HIGH SILICON ALUMINUM	270-425 BHN	600-3000	.001007	0.015	0.021	0.03	0.045		
METAL MATRIX COMPOSITIES	N/A	500-2000	.001007	0.008	0.012	0.02	0.03		
COPPER ALLOYS, BRASS, BRONZE	80-120 BHN	750-3500	.001007	0.015	0.021	0.03	0.045		
PRESINTERED TUNGSTEN CARBIDE	140-300 BHN	100-350	.001005	0.003	0.005	0.007	0.012		
ACRYLICS	N/A	700-1500	.001007	0.015	0.021	0.03	0.045		
FIBERGLASS	N/A	600-1000	.001007	0.012	0.02	0.03	0.045		
GRAPHITES	N/A	600-1000	.001007	0.015	0.021	0.03	0.045		
NYLON, PLASTIC	N/A	700-1500	.001007	0.015	0.021	0.03	0.045		
HARD RUBBER	N/A	500-2500	.001007	0.015	0.021	0.03	0.045		

APPLICATION GUIDELINES
Make sure the machine and setup is rigid and solid. Chatter will cause chipping.
Tool height when boring should be slightly above center. Tool deflection will put the tool on center.
Do not stop the machine with the tool in cut. This will result in tool breakage.
Use of coolant will reduce heat and improve surface finish.
Do not contact the tool to a hard surface prior to the machining process- this will cause chipping.
Higher speeds minimize tool buildup.
Depth of cut should not exceed 70% of PCD tip length.

As the DOC decreases the feed rate can increase DOC = Depth of Cut SFM = Surface Feet per Minute

CBN TIPPED TOOL INFORMATION

SCT CBN tools and inserts are excellent for continuous cutting of a wide range of hardened steels, powdered metals, cast irons and super alloys. The products are precision ground with hones for machining to sub-micron finishes with maximum tool life. CBN tipped tools and inserts can take the place of grinding.

				SINGLE POINT CBN TIPPED BARS						
MATERIAL	BHN/Rc	SPEED RANGE	FEED	TOOL DIAMETER						
		(SFM)	IPR	.120-160	.180230	290320	.360+			
				MAX DOC	MAX DOC	MAX DOC	MAX DOC			
HEAT TREATED ALLOY	45-60Rc	200-600	.001005	0.003	0.004	0.006	0.009			
TOOL STEEL	45-60Rc	200-600	.001005	0.003	0.004	0.006	0.009			
NODULAR IRON	N/A	600-1500	.001005	0.006	0.01	0.02	0.03			
PEARLITIC IRON	220- 240BHN	600-2500	.001007	0.006	0.01	0.02	0.03			
WHITE/CHILLED IRON	54-60Rc	200-500	.001005	0.005	0.008	0.012	0.015			
SUPER ALLOY NI BASE	240-475 BHN	200-800	001005	0.003	0.004	0.006	0.025			
COBOLT BASED ALLOY, STELLITE	45-55Rc	200-500	.001005	0.003	0.004	0.006	0.009			
INCONELS	45-55Rc	200-500	.001005	0.003	0.004	0.006	0.009			

As the DOC decreases the feed rate can increase DOC = Depth of Cut SFM = Surface Feet per Minute

APPLICATION GUIDELINES
Make sure the machine and setup is rigid and solid. Chatter will cause chipping
Tool height when boring should be slightly above center. Tool deflection will put the tool on center.
Do not stop the machine with the tool in cut. This will result in tool breakage.
Coolant use is not advised as it could cause thermal cracking.
Do not contact the tool to a hard surface prior to the machining process. This will cause chipping.
Depth of cut should not exceed 30% of CBN tip length.

(805) 584-9495 (800) 383-2244

SINGLE POINT TOOLS TECH INFO