INDEXABLE BORING BAR AND INSERTS 1/4" CARBIDE SHANK - TRIANGLE SHAPED INSERTS

EACH BAR COMES WITH ONE SCREW AND ONE KEY. INSERTS SOLD SEPARATELY.

CARBIDE INSERTS

FIVE	"R"	ORDER NUMBER		
SCREWS	RADIUS	FIVE UNCOATED	FIVE ALTiN+	
AT6+	0.003	ATD5031	ATD5031E	
AT6+	0.007	ATD5071	ATD5071E	
AT6+	0.015	ATD5151	ATD5151E	

60° TRIANGLE CHIP CONTROL RIGHT HAND ONLY

FIVE	"R"	ORDER NUMBER		
SCREWS	RADIUS	FIVE UNCOATED	FIVE ALTiN+	
AT6+	0.007	ATD507L2	ATD507L2E	
AT6+	0.015	ATD515L2	ATD515L2E	

60° TRIANGLE CBN/PCD TIPPED

ONE	"R"	ORDER NUMBER		
SCREW	RADIUS	ONE CBN	ONE PCD	
AT6+	0.007	ATD5071CBN2	ATD5071PCD	
AT6+	0.015	ATD5151CBN2	ATD5151PCD	

BAR WITHOUT COOLANT HOLE

Min. Bore	n300 + Steel Head Carbide Shank re .300 + 60° Triangle 4.0					.250
	"L"	BAR	INSERT		ORDER #	
	ANGLE	FLAT	TYPE		NO COOLANT HOLE	_
	5°	NONE	ATD5	RIGHT	ACBT250R5R	
	5°	FLAT	ATD5	RIGHT	ACBT250F5R	
	0°	NONE	ATD5	RIGHT	ACBT250R0R	
	0°	FLAT	ATD5	RIGHT	ACBT250F0R	
	5°	NONE	ATD5	LEFT	ACBT250R5L	
	5°	FLAT	ATD5	LEFT	ACBT250F5L	
	0°	NONE	ATD5	LEFT	ACBT250R0L	
	0°	FLAT	ATD5	LEFT	ACBT250F0L	

Scientific Cutting Tools, Inc. www.sct-usa.com sales@sct-usa.com

(805) 584-9495 (800) 383-2244

INDEXABLE BORING BAR FEED AND SPEED CHART

		SPEED RANGE (SFM)		CUTTING CONDITIONS		
MATERIAL	HB/Rc	UNCOATED	ALTIN+	MAX DOC ACD & ATD	MAX DOC ATP & ACP	FEED IPR
CAST IRON	160 HB	75-200	200-550	0.020	0.060	.0005010
CARBON STEEL	18 Rc	75-200	200-450	0.018	0.060	.0005010
ALLOY STEEL	20 Rc	75-200	200-425	0.015	0.060	.0005010
TOOL STEEL	25 Rc	75-175	175-300	0.010	0.030	.0005010
300 STAINLESS STEEL	150 HB	75-175	175-350	0.015	0.028	.0005010
400 STAINLESS STEEL	195 HB	75-210	130-420	0.012	0.028	.0005010
HIGH TEMP ALLOY (Ni & Co BASE)	20 Rc	50-130	130-300	0.008	0.020	.0005010
TITANIUM	25 Rc	50-120	120-275	0.009	0.022	.0005010
HEAT TREATED ALLOYS (38-45Rc)	40 Rc	50-100	100-200	0.005	0.010	.0005005
ALUMINUM	100 HB	75-250	250-750	0.025	0.095	.0005010
BRASS, ZINC	80 HB	75-300	250-650	0.023	0.090	.0005010

SFM = Surface Feet per Minute

Starting parameters only. Length to diameter ratios, setup, and machine rigidity may affect performance. The max Depth Of Cut (DOC) acceptable at the minimum Inches Per Revolution (IPR).

SELECTING AN INDEXABLE BORING BAR

1	From the part or print, verify the diameter of hole to be machined. Select the boring bar that has a minimum bore diameter smaller than the diameter to be machined.
2	Check machine for shank size needed. If the shank needs to be larger, go to page 96.
3	Match the operation needed on the part with the necessary lead angle. Select 0° lead to bore to a shoulder. Select 5° lead to bore and face a shoulder.
4	Choose from flat top or chip control insert based on application and material being machined.
5	Choose from .003", .007", or .015" radius based on finish required and part specifications for corner radius.

SELECTING AN INDEXABLE INSERT GRADE				
UNCOATED	b is a submicron premium carbide grade for machining steel and non-ferrous materials.			
ALTiN+	is a premium coated grade for steel, cast irons and high temperature alloys at highest SFM.			
CBN	are ideal for hardened steel (45+ RC) and cast iron.			
PCD	are ideal for non-ferrous materials.			

98

INDEXABLE BORING BAR TROUBLESHOOTING

PROBLEM	CAUSE	SOLUTION		
	CUTTING CONDITIONS	Reduce the cutting speed.		
RAPID FLANK WEAR	INSERT	Select a coated grade.		
	HEAT	Use the SCT coolant holder. If coolant is not available, use shop air and a coated tool. Use a coolant through boring bar.		
	INSERT	Select a coated grade.		
BUILT-UP EDGE	CUTTING FORCE	Use chip control insert to free up cut.		
	HEAT	Use coolant through boring bar or holder. If coolant is not available, use shop air and a coated tool. Use coolant through boring bar.		
	CUTTING CONDITIONS	Reduce depth of cut. Reduce feed rate.		
INSERT BREAKAGE	INSERT	Select a larger corner radius		
	PART	Check the drilled hole to make sure the full diameter of the drill is deeper than the programmed bore depth.		
	CUTTING CONDITIONS	Reduce feed rate. The rate is too great for the nose radius.		
	INSERT	Select a larger corner radius. The feed rate (IPR) should not be greater than 1/2 the nose radius.		
CHATTED	SETUP	Set insert above center. Change the speed of the machine. The overhang ratio should be less than 8x bar diameter for carbide. Clamping length should be at least 3x the boring bar diameter.		
UNATIEN	BORING BAR	Select the largest diameter bar that will bore the required diameter.		
	CUTTING FORCES	Forces may deflect bar below center causing the hole to become larger.		
TAPER BIGGER IN BACK	BUILT-UP EDGE	A built-up edge will cause the hole to become large until the built-up edge breaks off, then hole will be smaller.		
	PROGRAM	If the taper is consistent (not from chip packing) then the program can be altered to bore a taper in opposite direction resulting in a straight hole.		
TAPER SMALLER IN BACK	CHIP PACKING	If the boring bar is too large to allow chips to evacuate then the chips may pack on the insert and cause the bar to deflect away from the bore.		
	PROGRAM	If the taper is consistent (not from chip packing) then the program can be altered to bore a taper in opposite direction resulting in a straight hole.		

Scientific Cutting Tools, Inc. www.sct-usa.com sales@sct-usa.com

99

INDEXABLE BORING BAR DEFLECTION

The greatest amount of force on the boring bar is on the top of the cutting edge. This force can deflect the cutting edge below the centerline of the part, resulting in incorrect bore size.

To minimize deflection, the length of overhang should be kept as short as possible. As shown in the formula, the length of overhang is multiplied to the third power, and the diameter is multiplied to the fourth power. This means that a small change in length of overhang or bar diameter can make a large difference in deflection.

Using the largest diameter bar with the least amount of overhang as possible gives the best chance of successful boring operations.

The picture shows the boring bar in a coolant holder.* Coolant or shop air provided to the holder will cool the insert and part and evacuate chips from the hole.

*Coolant holders available. See page 46.

