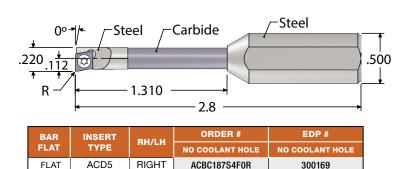
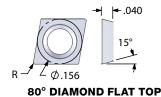
FLAT


INDEXABLE STEP BORING BAR AND INSERTS

1/2" SHANK STEP BARS WITH DIAMOND SHAPED INSERTS

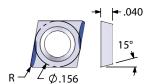

EACH BAR COMES WITH ONE SCREW AND ONE KEY. INSERTS SOLD SEPARATELY.

BAR WITH COOLANT HOLE

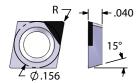
0.220 MINIMUM BORE

CARBIDE INSERTS

FIVE	"R"	ORDI	ER#	EDP#		
SCREWS	CORNER RADIUS	FIVE UNCOATED	FIVE ALTIN+	FIVE UNCOATED	FIVE ALTIN+	
AT6+	0.003	ACD5031	ACD5031E	301001	301008	
AT6+	0.007	ACD5071	ACD5071E	301015	301029	
AT6+	0.015	ACD5151	ACD5151E	301057	301071	


INDEXABLE BORING **BAR ACCESSORIES**

REPLACEMENT FLAG KEYS AND SCREWS


- All 3/16", 1/4", and 5/16" right and left-hand bars use AT6+ screws (for triangle or diamond-shaped inserts)
- > All 3/8" and 1/2" bars use AT8+ screws
- AT6+ screws use AT6+ flag keys. AT8+ screws use AT8+ flag keys.

REPLACEMENT PACKS						
ACCESSORY	SIZE	ORDER #	EDP#			
FLAG KEY (2 PACK)	AT6+	A6KEY	302301			
FLAG KEY (2 PACK)	AT8+	A8KEY	302304			
SCREWS (10 PACK)	AT6+	A6SCREWS	302307			
SCREWS (10 PACK)	AT8+	A8SCREWS	302310			

80° DIAMOND CHIP CONTROL **RIGHT HAND ONLY**

FIVE	"R"	ORDI	ER#	EDP#		
SCREWS	CORNER RADIUS	FIVE UNCOATED	FIVE ALTIN+	FIVE UNCOATED	FIVE ALTIN+	
AT6+	0.007	ACD507L3	ACD507L3E	301044	301051	
AT6+	0.015	ACD515L3	ACD515L3E	301086	301093	

80° DIAMOND CBN/PCD TIPPED

ONE	"R"	ORD	ER#	EDP#	
SCREW	CORNER RADIUS	ONE CBN	ONE PCD	ONE CBN	ONE PCD
AT6+	0.007	ACD5071CBN2	ACD5071PCD	301022	301036
AT6+	0.015	ACD5151CBN2	ACD5151PCD	301064	301078

Inserts and compatible bars are listed together.

INDEXABLE BORING BAR FEED AND SPEED CHART

		SPEED RAN	IGE (SFM)	CUTTING CONDITIONS		
MATERIAL	HB/Rc	UNCOATED	ALTIN+	MAX DOC ACD & ATD	MAX DOC ATP & ACP	FEED IPR
CAST IRON	160 HB	75-200	200-550	0.020	0.060	.0005010
CARBON STEEL	18 Rc	75-200	200-450	0.018	0.060	.0005010
ALLOY STEEL	20 Rc	75-200	200-425	0.015	0.060	.0005010
TOOL STEEL	25 Rc	75-175	175-300	0.010	0.030	.0005010
300 STAINLESS STEEL	150 HB	75-175	175-350	0.015	0.028	.0005010
400 STAINLESS STEEL	195 HB	75-210	130-420	0.012	0.028	.0005010
HIGH TEMP ALLOY (Ni & Co BASE)	20 Rc	50-130	130-300	0.008	0.020	.0005010
TITANIUM	25 Rc	50-120	120-275	0.009	0.022	.0005010
HEAT TREATED ALLOYS (38-45Rc)	40 Rc	50-100	100-200	0.005	0.010	.0005005
ALUMINUM	100 HB	75-250	250-750	0.025	0.095	.0005010
BRASS, ZINC	80 HB	75-300	250-650	0.023	0.090	.0005010

SFM = Surface Feet per Minute

Starting parameters only. Length to diameter ratios, setup, and machine rigidity may affect performance. The max Depth Of Cut (DOC) acceptable at the minimum Inches Per Revolution (IPR).

	SELECTING AN INDEXABLE BORING BAR
1	From the part or print, verify the diameter of hole to be machined. Select the boring bar that has a minimum bore diameter smaller than the diameter to be machined.
2	Check machine for shank size needed. If the shank needs to be larger, consider a step bar.
3	Match the operation needed on the part with the necessary lead angle. Select 0° lead to bore to a shoulder. Select 5° lead to bore and face a shoulder.
4	Choose from flat top or chip control insert based on application and material being machined.
5	Choose from .003", .007", or .015" radius based on finish required and part specifications for corner radius.

	SELECTING AN INDEXABLE INSERT GRADE
UNCOATED	is a submicron premium carbide grade for machining steel and non-ferrous materials.
ALTIN+	is a premium coated grade for steel, cast irons and high temperature alloys at highest SFM.
CBN	are ideal for hardened steel (45+ RC) and cast iron.
PCD	are ideal for non-ferrous materials.

INDEXABLE BORING BAR TROUBLESHOOTING

PROBLEM	CAUSE	SOLUTION
	CUTTING CONDITIONS	Reduce the cutting speed.
RAPID FLANK WEAR	INSERT	Select a coated grade.
	HEAT	Use the SCT coolant holder. If coolant is not available, use shop air and a coated tool. Use a coolant through boring bar.
	INSERT	Select a coated grade.
BUILT-UP EDGE	CUTTING FORCE	Use chip control insert to free up cut.
	HEAT	Use coolant through boring bar or holder. If coolant is not available, use shop air and a coated tool. Use coolant through boring bar.
	CUTTING CONDITIONS	Reduce depth of cut. Reduce feed rate.
INSERT Breakage	INSERT	Select a larger corner radius
	PART	Check the drilled hole to make sure the full diameter of the drill is deeper than the programmed bore depth.
SURFACE	CUTTING CONDITIONS	Reduce feed rate. The rate is too great for the nose radius.
TOO ROUGH	INSERT	Select a larger corner radius. The feed rate (IPR) should not be greater than 1/2 the nose radius.
CHATTER	SETUP	Set insert above center. Change the speed of the machine. The overhang ratio should be less than 8x bar diameter for carbide. Clamping length should be at least 3x the boring bar diameter.
	BORING BAR	Select the largest diameter bar that will bore the required diameter.
	CUTTING FORCES	Forces may deflect bar below center causing the hole to become larger.
TAPER BIGGER IN BACK	BUILT-UP EDGE	A built-up edge will cause the hole to become large until the built-up edge breaks off, then hole will be smaller.
5.101.	PROGRAM	If the taper is consistent (not from chip packing) then the program can be altered to bore a taper in opposite direction resulting in a straight hole.
TAPER SMALLER	CHIP PACKING	If the boring bar is too large to allow chips to evacuate then the chips may pack on the insert and cause the bar to deflect away from the bore.
IN BACK	PROGRAM	If the taper is consistent (not from chip packing) then the program can be altered to bore a taper in opposite direction resulting in a straight hole.

Fax: (805) 584-9629 Fax: (888) 728-3295

CBN & PCD INSERTS TECHNICAL INFORMATION

PCD TIPPED INSERT FEED AND SPEED

		SPEED RANGE (SFM)		PCD TIPPE	D INSERTS
MATERIAL	BHN/Rc		FEED IPR	TOOL DIA. .220363	TOOL DIA. .421560
		(51,		MAX DOC	MAX DOC
LOW SILICON ALUMINUM	225-350 BHN	1000-5000	.001007	0.025	0.08
HIGH SILICON ALUMINUM	270-425 BHN	600-3000	.001007	0.025	0.08
METAL MATRIX COMPOSITIES	N/A	500-2000	.001007	0.015	0.035
COPPER ALLOYS, BRASS, BRONZE	80-120 BHN	750-3500	.001007	0.025	0.08
PRESINTERED TUNGSTEN CARBIDE	140-300 BHN	100-350	.001005	0.007	0.012
ACRYLICS	N/A	700-1500	.001007	0.025	0.08
FIBERGLASS	N/A	600-1000	.001007	0.02	0.06
GRAPHITES	N/A	600-1000	.001007	0.025	0.08
NYLON, PLASTIC	N/A	700-1500	.001007	0.025	0.08
HARD RUBBER	N/A	500-2500	.001007	0.025	0.08

APPLICATION GUIDELINES
Make sure the machine and setup is rigid and solid. Chatter will cause chipping.
Tool height when boring should be slightly above center. Tool deflection will put the tool on center.
Do not stop the machine with the tool in cut. This will result in tool breakage.
Use of coolant will reduce heat and improve surface finish.
Do not contact the tool to a hard surface prior to the machining process- this will cause chipping.
Higher speeds minimize tool buildup.
Depth of cut should not exceed 70% of PCD tip length.

SFM = Surface Feet per Minute DOC= Depth of Cut

AS THE DOC DECREASES THE FEED RATE CAN INCREASE

SCT PCD tools and inserts are excellent for continuous cutting of a wide range of non-ferrous and non-metal materials. The products are precision ground for machining to sub-micron finishes with maximum tool life. PCD allows for higher cutting speeds with longer tool life.

CBN TIPPED INSERT FEED AND SPEED

				CBN TIPPED INSERTS		
MATERIAL	BHN/Rc	SPEED RANGE (SFM)	FEED IPR	TOOL DIA. .220363	TOOL DIA. .421560	
		(====,		MAX DOC	MAX DOC	
HEAT TREATED ALLOY	45-60Rc	200-600	.001005	0.01	0.04	
TOOL STEEL	45-60Rc	200-600	.001005	0.01	0.04	
NODULAR IRON	N/A	600-1500	.001005	0.009	0.035	
PEARLITIC IRON	220-240 BHN	600-2500	.001007	0.009	0.035	
WHITE/CHILLED IRON	54-60Rc	200-500	.001005	0.008	0.035	
SUPER ALLOY NI BASE	240-475 BHN	200-800	001005	0.008	0.035	
COBOLT BASED ALLOY, STELLITE	45-55Rc	200-500	.001005	0.008	0.035	
INCONELS	45-55Rc	200-500	.001005	0.008	0.035	

Make sure the machine and setup is rigid and sol Chatter will cause chipping	id.
Tool height when boring should be slightly above center. Tool deflection will put the tool on center.	
Do not stop the machine with the tool in cut. This will result in tool breakage.	
Coolant use is not advised as it could cause thermal cracking.	
Do not contact the tool to a hard surface prior to the machining process. This will cause chipping.	
Depth of cut should not exceed 30% of CBN tip length.	

APPLICATION GUIDELINES

SFM = Surface Feet per Minute DOC= Depth of Cut

AS THE DOC DECREASES THE FEED RATE CAN INCREASE

SCT CBN tools and inserts are excellent for continuous cutting of a wide range of hardened steels, powdered metals, cast irons and super alloys. The products are precision ground with hones for machining to sub-micron finishes with maximum tool life. CBN tipped tools and inserts can take the place of grinding.