

Eaton Vickers Roughers & Finishers Parker Common Cavity Roughers & Finishers Hydraforce Roughers & Finishers Sun Hydraulic Roughers, Drills & Finishers

CAVITY TOOL PRODUCT OVERVIEW

All Cavity Tools are ground between centers to ensure absolute concentricity. They are made from heat-treated alloy steel with brazed carbide inserts. They are designed to enlarge a pre-drilled hole and easily produce a complex form. Cavity Tools can be used for both lathe and mill applications. Technical information available on page 108.

Parker Common Cavity (p.111-112) Parker Common Cavity tools are carbide tipped and are stocked in both roughing and finishing versions.

	Cavity
--	--------

Sun Hydraulic (p.115-116) Sun Hydraulic cavity tools are stocked in both HSS roughing step drills and carbide tipped finishing and roughing versions.

Hydraforce (p.113-114) Hydraforce (VC) carbide tipped cavity tools are stocked in both roughing and finishing versions.

Eaton Vickers (p.117-118) Eaton Vickers cavity tools are carbide tipped and stocked in both roughing and finishing versions.

CAVITY TOOL TECHNICAL INFORMATION PAGE 108

PORT & CAVITY TECHNICAL INFORMATION

		SPEED (SFM)		CUTTING CONDITIONS	
MATERIAL	HB/Rc	UNCOATED	ALTiN+	INFEED PER FLUTE REAM	INFEED PER FLUTE SPOT FACE
CAST IRON	130 HB	75-210	200-450	.0010025	.00080020
CARBON STEEL	18 Rc	125-190	190-400	.0010030	.0010020
ALLOY STEEL	20 Rc	70-135	130-350	.0010030	.00080020
TOOL STEEL	25 Rc	75-100	100-220	.0010025	.00050020
300 STAINLESS STEEL	150 HB	90-100	100-230	.0010020	.00070015
400 STAINLESS STEEL	195 HB	90-135	135-300	.0010020	.00050015
HIGH TEMP ALLOY (NICKEL & COBALT BASE)	20 Rc	30-125	100-150	.00080015	.00050010
TITANIUM	25 Rc	50-100	100-140	.0010020	.00050010
HEAT TREATED ALLOYS (38-45Rc)	40 Rc	50-75	75-130	.00080015	.00050010
ALUMINUM	100 HB	850-1000	800-1500	.0020040	.00100030
BRASS, ZINC	80 HB	750-950	800-1200	.0020040	.00100030

SFM = Surface Feet per Minute

Starting parameters only. Setup and machine rigidity may affect performance.

RPM = SFM x 3.82 divided by tool diameter	r
---	---

PROBLEM	CAUSE	SOLUTION	
RAPID FLANK WEAR	CUTTING CONDITIONS	Check for excessive speed and feed - see chart.	
	TOOL	Select a coated tool.	
	PROGRAM	Remove dwell from program at end of cut.	
Built-up Edge	TOOL	Select a coated tool. The coating will resist built-up edges.	
	HEAT	Use coolant through port tool. If coolant is not available, use shop air and a coated tool.	
SURFACE TORN	TOOL	Use a coated tool. On most carbon steels, an uncoated tool will not produce an acceptable finish.	
CHATTER	TOOL	Hone cutting edge of spot face. Use Coated Tool. Increase chip load.	
LIGHT CHATTER	PROGRAM	Increase speed by 15-20%. A faster speed reduces forces. A dwell typically will not remove chatter.	
POOR TOOL LIFE	AMOUNT OF STOCK	Rough port to 0.97 inch of finish size.	
	PART	Make sure prior operation did not work harden the material.	

SAMPLE PROGRAM FOR MAXIMUM PRODUCTIVITY

N51 (Sample Port Tool Program: MS33649-4RA (ALTiN+) cutting Carbon Steel

T51 M06	Select Tool
S2916 M03	SFM = 300 ; RPM = 300 x 3.82 / Reamer Diameter
G00 G90 G54 X0. Y0.	RPM = 300 X 3.82 / 0.393
G43 H51 Z0.1 M08	RPM = 2916
G01 Z-0.6 F23.3	Feed Rate = RPM x 0.002 x 4 (Number of Flutes)
S1290 M03	RPM = 300 x 3.82 / 0.888 (Spot Face Diameter)
G04 P1.	Dwell to slow down spindle
G01 Z73 F10.3	Feed rate = RPM x 0.002 x 4 (Number of Flutes)
G00 Z5. M09	

